

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 4151-4155

De novo synthesis of a *galacto*-papulacandin moiety via an iterative dihydroxylation strategy

Md. Moinuddin Ahmed and George A. O'Doherty*

Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA

Received 17 April 2005; accepted 18 April 2005

Abstract—A short and highly efficient route to both the pyranose and furanose forms of a *galacto*-papulacandin ring system has been developed. The key to the overall transformation is the sequential two osmium-catalyzed dihydroxylation reactions of substituted 2,4-dienone. The resulting tetrol can be efficiently transformed into the two spiroketal moieties of *galacto*-papulacandin, which can also be inter-converted via acid catalyzed equilibration.

© 2005 Elsevier Ltd. All rights reserved.

The papulacandins are a class of naturally occurring glycolipids with potent antifungal activity against *Candida albicans* and several other yeasts. They are also found to be active against *P. carinii pneumonia*, a most prevalent opportunistic infection that is a frequent cause of death in AIDS patients. The papulacandins were isolated from the fermentation broths of *Papularia spherosperma*² and *Dictyochaeta simplex*. The mechanism of action for the papulacandins is believed to be the inhibition of 1,3- α -D-glucan synthase, which is essential for cell wall construction in fungal cells but not exist in human cells.

Of the papulacandins A–D, papulacandin C is the most active member (Fig. 1). Papulacandin C contains a lac-

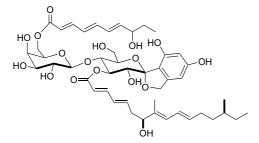


Figure 1. Papulacandin C.

tose disaccharide with the *gluco*-sugar converted to a spirocyclic arylglycoside. On each sugar there is an unsaturated fatty acid, linked at the *C*-3 and *C*-6' hydroxyl groups. The simplest member, papulacandin D, lacks the *C*-4 galactose with the *C*-6' acyl group.

The high degree of selective toxicity and the fascinating molecular structure of the papulacandins have stimulated a significant amount of both biological⁵ and synthetic research by a number of research groups.⁶ So far, only one member of the papulacandins has ceded to total synthesis that being by the efforts of Barrett et al.⁷ Hitchcock and his group at Lilly have completed a semi-synthesis of papulacandin D by attaching the more readily available papulacandin A side chain to the papulacandin D ring system.⁸ These two routes, when taken together, can be used to assign the absolute stereochemistry of the *C*-3 acyl side chain for both papulacandin A and papulacandin D.

With the exception of the work from the Danishefsky group^{6a} and our own,⁹ all other routes to the papulacandins derived their asymmetry from D-glucose. Danishefsky used a Diels-Alder strategy to construct the spiroketal portion of the papulacandins, in which the asymmetry was derived from a combination of chiral auxiliary and chiral Lewis acid.^{6a} Our group has developed an approach to the mannose, allose and glucose stereoisomers of the papulacandin ring system via an asymmetric dihydroxylation of 5-aryl-2-vinyl furans (1a-c from 2, Scheme 1), followed by an Achmatowicz rearrangement.¹⁰ The route initially generated a mixture

^{*} Corresponding author. Tel.: +1 304 293 3435x6444; fax: +1 800 293 4904; e-mail: george.odoherty@mail.wvu.edu

Scheme 1. De novo approaches to various papulacandins.

of *manno*- and *allo*-papulacandins (1a/b) and using an oxidation/reduction strategy, converted the *manno*-isomer to the *gluco*-isomer (1a to 1c).⁹

In the context of a research program aimed at the synthesis and biological study of the papulacandins and various analogues, we have been looking for an easy entry into the spiroketal moiety of a *galacto*-papulacandin. In particular, we desired a *galacto*-papulacandin 1d to examine it as both a potential glycosidase and a glycosyl transferase inhibitor. While in theory 1d could be prepared from the *gluco*-isomer 1c, in practice this would require too many additional steps. Thus we decided to investigate an alternative de novo approach to a *galacto*-papulacandin 1d. Ultimately we hoped that a *galacto*-isomer like 1d would lead to the formation of disaccaride papulacandins via an S_N2 -type inversion at C-4.

For some time, we have been exploiting the efficiency of the Sharpless asymmetric dihydroxylation of various 2,4-dienoates for synthesis. ¹¹ Quite recently we disclosed our discovery that various *galacto*-sugars can be easily prepared from 2,4-dienoates iteratively using the Sharpless asymmetric dihydroxylation. ¹² Herein we would like to describe a new strategy for construction of the spiroketal moiety of *galacto*-papulacandin 1d via a similar iterative osmium-catalyzed dihydroxylation reaction of substituted 2,4-dienone 3 (Scheme 2).

Retrosynthetically, we envisioned constructing the desired dienone 3 by an HWE-olefination of β -keto phosphonate 6 with the known aldehyde 7. The β -keto phosphonate 6 was easily prepared from the 3,5-dibenzyloxy benzyl alcohol 8 in four steps and excellent overall yield 56% (Scheme 3). The benzylic alcohol 8 was selectively iodinated with NIS and then protected to form TBS ether 9 in excellent overall yield (91%). Carbonylation of 9 with catalytic palladium in methanol gave 10 in 82% yield, which upon exposure to a lithiated trimethylphosphate gave β -keto phosphonate 6 in 75% yield.

With ample supplies of phosphonate 6, we next investigated the synthesis of dienone 3 and its subsequent bis-dihydroxylation (Scheme 4). Exposure of 6 and 7 to Cs₂CO₃ in *i*-propanol gave a good yield of the desired dienone 3 (70% yield). ^{13,14} The 2,4-dienone 3 was

Scheme 2. Retrosynthetic analysis of galacto-papulacandin.

exposed to the typical Sharpless AD-mix procedure (4% OsO₄/4.1% (DHQD)₂ PHAL, 3 equiv of K₃Fe(CN)₆/K₂CO₃, 1 equiv of MeSO₂NH₂) to give diol **5** in a good yield (60%) and high enantiomeric excess (90% ee).¹⁵ As we found with the dienoates,¹² this double bond selectivity in the dihydroxylation of dienone **3** can be explained in terms of electron density of the π-system; where as, the second double bond does not react under the reaction conditions because of a mismatch between the reagent ((DHQD)₂PHAL/OsO₄) and substrate (**5**).¹²

The mismatch between the substrate and reagent was also seen when the ligand ((DHQD)₂PHAL) was removed from the AD-mix reaction condition (Scheme 4). Thus, when diol 5 were exposed to the typical Upjohn procedure (OsO₄/NMO in *t*-BuOH/acetone), it reacted with achiral OsO₄ to afford tetrol product with good conversion, which was isolated as their corresponding tetra-acetate 4 (70% yield in two steps) with 4:1 diastereomeric ratio. Tonce the minor diastereomer was removed by silica gel chromatography the tetra-acetate 4 was obtained with essentially complete enantiomeric and diastereomeric purity.

Deprotection of TBS group from tetra-acetate 4 using 3 M HCl/MeOH afforded the mixed ketal 11 in excellent yield (90%). Exposure of 11 to the global acetate deprotection (5 equiv LiOH/MeOH), followed by spiro-

Scheme 3. Synthesis of β -keto phosphonate.

Scheme 4. Regio- and diastereoselective dihydroxylation.

Scheme 5. Deprotection and spiroketalization.

ketalization of the crude material using 3 M HCl afforded *galacto*-pyrano papulacandin **1d** and *galacto*-furano papulacandin **12** as 2:1 ratio and good yield (80%; Scheme 5).¹⁸

By simply keeping track of the exact amounts of acid and base used in the deprotection/spiroketalization steps an improved one-pot procedure was achieved (Scheme 6). Thus exposing a MeOH solution of tetra-acetate 4 to 1 equiv of HCl (3 M), then 5 equiv of LiOH, followed

by 6 equiv of HCl (3 M) gave the same 2:1 mixture of 1d and 12 in an improved overall yield (80%).

To establish whether 1d and 12 were formed via thermodynamically controlled process the two isomers were separately equilibrated under mildly acidic conditions until identical ratios were achieved. Thus, the *galacto*-pyrano-papulacandin 1d and *galacto*-furano-papulacandin 12 were separately exposed to a catalytic amount of Py·TsOH (10%) in methanol. After 36 h, crude ¹H NMR

Scheme 6. One-pot deprotection and spiroketalization.

Scheme 7. Spiroketal equilibration.

12

analysis indicated that both solutions had equilibrated to the original 2:1 ratio. It is important to note that these equilibrated mixtures of isomers were re-isolated in excellent yields (95% yield, Scheme 7); therefore, indicated that neither isomer was being selectively destroyed under the reaction conditions.

In summary, we have developed a concise de novo approach to both the pyranose and furanose forms of a galacto-papulacandin (1d and 12) from 2,4-dienone 3 in four steps and 33% overall yield. The complete synthesis requires only nine total steps from commercially available 3,5-dibenzyloxybenzyl alcohol 8, which has provided significant quantities (\sim 500 mg in three batch) of material for both biological study and further synthetic efforts toward papulacandin C.

Acknowledgements

We are grateful to NIH (GM63150) and NSF (CHE-0415469) for the support of our research program and NSF-EPSCoR (0314742) for a 600 MHz NMR at WVU.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2005.04.073.

References and notes

- (a) Schmatz, D. M.; Romancheck, M. A.; Pittarelli, L. A.; Schwartz, R. E.; Fromtling, R. A.; Nollstadt, K. H.; Van Middlesworth, F. L.; Wilson, K. E.; Turner, M. J. *Proc.* Natl. Acad. Sci. U.S.A. 1990, 87, 5950–5954; (b) Kovacs, J.; Masur, H. J. Infect. Dis. 1988, 158, 254–259.
- Traxler, P.; Gruner, J.; Auden, J. A. L. J. Antibiot. 1977, 30, 289–296.
- 3. (a) Van Middlesworth, F.; Omstead, M. N.; Schmatz, D.; Bartizal, K.; Fromtling, R.; Bills, G.; Nollstadt, K.; Honeycutt, S.; Zweerink, M.; Garrity, G.; Wilson, K. *J. Antibiot.* 1991, 44, 45–51; (b) Jabri, E. D. R.; Quigley, M.; Alders, M.; Hrmova, M.; Taft, C. S.; Phelps, P.; Selitrennikoff, C. P. *Curr. Microbiol.* 1989, 19, 153–161; (c) Bartizal, K.; Abruzzo, G.; Trainor, C.; Krupa, D.;

- Nollstadt, K.; Schmatz, D.; Schwartz, R.; Hammond, M.; Balkovec, J.; Van Middlesworth, F. L. *Antimicrob. Agent Chemother.* **1992**, *36*, 1648–1657.
- (a) Baguley, B. C.; Rommele, G.; Gruner, J.; Wehrli, W. Eur. J. Biochem. 1979, 97, 345–351; (b) Perez, P.; Varona, R.; Garcia-Acha, I.; Duran, A. FEBS Lett. 1981, 129, 249–252; (c) Varona, R.; Perez, P.; Duran, A. FEMS Microbiol. Lett. 1983, 20, 243–247; (d) Rommele, G.; Traxler, P.; Wehrli, W. J. Antibiot. 1983, 36, 1539–1542.
- (a) Kaneto, R.; Chiba, H.; Agematu, H.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R. J. Antibiot. 1993, 46, 247–250; (b) Chiba, H.; Kaneto, R.; Agematu, H.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R. J. Antibiot. 1993, 46, 356–358; (c) Aoki, M.; Andoh, T.; Ueki, T.; Masuyoshi, S.; Sugawara, K.; Oki, T. J. Antibiot. 1993, 46, 952–960; (d) Okada, H.; Nagashima, M.; Suzuki, H.; Nakajima, S.; Kojiri, K.; Suda, H. J. Antibiot. 1996, 49, 103–106; (e) Traxler, P.; Fritz, H.; Fuhrer, H.; Richter, W. J. J. Antibiot. 1980, 33, 967–978.
- 6. For other approaches to the papulacandin ring system see: (a) Danishefsky, S.; Philips, G.; Ciufolini, M. Carbohydr. Res. 1987, 171, 317–327; (b) Parker, K. A.; Georges, A. T. Org. Lett. 2000, 2, 497–499; (c) Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808-5810; (d) Friesen, R. W.; Loo, R. W.; Sturino, C. F. Can. J. Chem. 1994, 72, 1262-1272; (e) Friesen, R. W.; Daljeet, A. K. Tetrahedron Lett. 1990, 31, 6133-6136; (f) Dubois, E.; Beau, J.-M. Tetrahedron Lett. 1990, 31, 5165-5168; (g) Dubois, E.; Beau, J.-M. Carbohydr. Res. 1992, 223, 157–167; (h) Rosenblum, S.; Bihovsky, M. J. Am. Chem. Soc. 1990, 112, 2746-2748; (i) Czernecki, S.; Perlat, M. C. J. Org. Chem. 1991, 56, 6289-6292; (j) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605-6606; (k) Schmidt, R. R.; Frick, W. Tetrahedron 1988, 44, 7163-7169; (1) Carretero, J. C.; Eugenio de Diego, J.; Hamdouchi, C. Tetrahedron 1999, 55, 15159-15166.
- Barrett, A. G. M.; Pena, M.; Willardsen, J. A. J. Org. Chem. 1996, 61, 1082–1100.
- 8. (a) Hitchcock, S. A.; Gregory, G. S.; Kraynack, E. A.; Mayhugh, D. R. 218th ACS National Meeting, New Orleans, August 22–26, 1999; (b) Hitchcock, S. A. In *Frontiers of Biotechnology & Pharmaceuticals*; Science: New York, 2002; Vol. 3, pp 229–242.
- (a) Balachari, D.; O'Doherty, G. A. Org. Lett. 2000, 2, 863–866; (b) Balachari, D.; O'Doherty, G. A. Org. Lett. 2000, 2, 4033–4036.
- An Achmatowicz reaction is the oxidative rearrangement of furfuryl alcohols to 2-substituted 6-hydroxy-2H-pyran-3(6H)-ones. For examples see: (a) Achmatowicz, O.; Bielski, R. Carbohydr. Res. 1977, 55, 165–176; (b) Grapsas, I. K.; Couladouros, E. A.; Georgiadis, M. P. Pol. J. Chem. 1990, 64, 823–826; For its use in de novo carbohydrate synthesis see: Ref. 9, and (c) Harris, J. M.; Keranen, M. D.; O'Doherty, G. A. J. Org. Chem. 1999, 64, 2982–2983; (d) Harris, J. M.; Keranen, M. D.; Nguyen, H.; Young, V. G.; O'Doherty, G. A. Carbohydr. Res. 2000, 328, 17–36.
- (a) Hunter, T. J.; O'Doherty, G. A. Org. Lett. 2001, 3, 1049–1052; (b) Hunter, T. J.; O'Doherty, G. A. Org. Lett. 2002, 4, 4447–4450; (c) Smith, C. M.; O'Doherty, G. A. Org. Lett. 2003, 5, 1959–1962.
- Ahmed, Md. M.; Berry, B. P.; Hunter, T. J.; Tomcik, D. J.; O'Doherty, G. A. Org. Lett. 2005, 7, 745–748
- 13. It is worth noting that the use of *i*-propanol was critical to prevent polymerization of enal 7, see: Ref. 14.
- Narkunan, K.; Nagarajan, M. J. Org. Chem. 1994, 59, 6386–6390.

(a) The enantioexcesses of diol 5 was determined by examining the ¹H NMR of Mosher ester 13b; (b) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143–2147.

- 16. When diol 5 was dihydroxylated with the matched reagent system ((DHQ)₂PHAL/OsO₄) gave the same selectivity as the OsO₄/NMO reaction but in a lower overall yield (44%).
- 17. (a) Cha, J. K.; Christ, W. J.; Kishi, Y. *Tetrahedron Lett.* **1983**, *24*, 3943–3946; For a review of diastereoselection in the osmium catalyzed dihydroxylation reaction see: (b) Cha, J. K.; Kim, N.-S. *Chem. Rev.* **1995**, *95*, 1761–1795
- 18. Major Isomer (1d): R_f (EtOAc) = 0.32; mp 151 °C; $[\alpha]_D^{25}$ 12.7 (c 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3480, 2957, 2921, 2873, 2360, 1637, 1540, 1494, 1456, 1418, 1338, 1154, 1092, 1064, 980; ¹H NMR (600 MHz, CDCl₃) δ 7.39 (m, 15H), 6.51 (d, J = 1.2 Hz, 1H), 6.42 (d, J = 1.8 Hz, 1H), 5.15 (d, J = 12 Hz, 1H), 5.11 (d, J = 11.4 Hz, 1H), 5.09 (d, J = 11.4 Hz, 1H), 5.07 (d, J = 12 Hz, 1H), 5.03 (s, 2H), 4.65 (dd, J = 9.0, 8.4 Hz, 1H), 4.57 (d, J = 12 Hz, 1H), 4.52

(d, J = 12 Hz, 1H), 4.19 (ddd, J = 6.0, 4.2, 1.2 Hz, 1H), 4.14 (ddd, J = 7.2, 4.2, 1.2 Hz, 1H), 3.87 (ddd, J = 9.0, 4.2, 4.2 Hz, 1H), 3.80 (dd, J = 10.2, 6.0 Hz, 1H), 3.73 (dd, J = 10.2, 4.8 Hz, 1H), 2.83 (d, J = 3.6 Hz, 1H), 2.65 (d, J = 6.0 Hz, 1H), 1.89 (d, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 162.1, 154.9, 143.4, 137.8, 136.5, 136.4, 128.6 (2C), 128.5 (2C), 128.4 (2C), 128.1, 127.8, 127.7 (2C), 127.6, 127.4 (2C), 126.9 (2C), 118.2, 110.8, 100.5, 98.4, 73.6, 73.0, 72.5, 70.9, 70.4, 70.3, 70.2, 70.0, 69.9; CIHRMS: Calculated for $[C_{34}H_{34}O_8+Na]^+$: 593.2151, found: 593.2125.

Minor Isomer (12): $R_{\rm f}$ (EtOAc) = 0.27; $[\alpha]_{\rm D}^{25}$ -9.9 (c 1, CH₂Cl₂); IR (thin film, cm⁻¹) 3480, 2957, 2921, 2851, 2360, 1637, 1540, 1494, 1456, 1418, 1338, 1154, 1114, 1092, 1064, 980, 731; ¹H NMR (600 MHz, CDCl₃) δ 7.39 (m, 15H), 6.51 (d, J = 1.2 Hz, 1H), 6.38 (d, J = 1.8 Hz, 1H), 5.18 (d, J = 12.6 Hz, 1H), 5.11 (d, J = 12 Hz, 1H), 5.08 (d, J = 12 HJ = 12 Hz, 1H), 5.02 (s, 2H), 4.96 (d, J = 12.6 Hz, 1H), 4.77 (dd, J = 9.0, 8.4 Hz, 1H), 4.56 (d, J = 12.6 Hz, 1H), 4.53 (d, J = 12.6 Hz, 1H), 4.29 (dd, J = 8.4, 7.2 Hz, 1H), $3.95 \, (dd, J = 7.2, 4.8 \, Hz, 1H), 3.91 \, (ddd, J = 6.6, 6, 4.8 \, Hz, 1H)$ 1H), 3.60 (dd, J = 9.6, 6.6 Hz, 1H), 3.53 (dd, J = 9.6, 7.2 Hz, 1H), 2.93 (d, J = 1.2 Hz, 1H), 2.81 (d, J = 6.0 Hz, 1H), 2.49 (d, J = 10.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 162.3, 155.1, 143.3, 137.7, 136.4, 136.2, 128.7 (2C), 128.6 (2C), 128.4 (2C), 128.1,128.0, 127.8, 127.7 (2C), 127.4 (2C), 127.0 (2C), 116.0, 114.2, 100.4, 98.1, 81.3, 78.6, 76.2, 73.5, 72.8, 71.4, 70.4, 70.3, 69.9; CIHRMS: calculated for $[C_{34}H_{34}O_8+Na]^+$: 593.2151, found: 593.2109.